Long-Period InAs/GaSb Type-II Superlattices for Terahertz Application
نویسندگان
چکیده
We present a theoretical study on the terahertz (THz) optoelectronic properties of long-period InAs/GaSb type-II super lattices (SLs). The eight-band k·p model is used to calculate the electronic structures of such SLs and on the basis of band structures, the Boltzmann equation approach is employed to calculate the optical absorption coefficients for the corresponding SL systems. It is found that long-period InAs/GaSb type-II SLs have a considerable absorption in the THz bandwidth. By examining the dependence of THz absorption coefficient on the InAs/GaSb layer widths, we demonstrate that with a proper choice of InAs/GaSb layer widths, an optimized THz absorption can be achieved. This study is pertinent to the potential application of InAs/GaSb type-II SLs as THz photo detectors.
منابع مشابه
Terahertz band-gap in InAs/GaSb type-II superlattices
We demonstrate theoretically that it is possible to realize terahertz (THz) fundamental band-gap between the electron mini-band in the InAs layer and the heavy-hole mini-band in the GaSb layer in InAs/GaSb based type II superlattices (SLs). The THz band-gap can be tuned by varying the sample growth parameters such as the well widths of the InAs and/or GaSb layers. The presence of such band-gap ...
متن کاملMolecular beam epitaxy growth and characterization of type-II InAs/GaSb strained layer superlattices for long-wave infrared detection
The authors report on investigation of type-II InAs/GaSb and InAs/InxGa1−xSb strained layer superlattices SLSs for long-wave infrared detection. Growth conditions were optimized to obtain nearly lattice matched a /a 0.03% 13 ML InAs/7 ML GaSb SLS nBn detector structure with cutoff wavelength of 8.5 m 77 K . Dark current density was equal to 3.2 10−4 A /cm2 Vb =+50 mV, 77 K for this detector str...
متن کاملMetalorganic chemical vapor deposition growth of InAs/GaSb type II superlattices with controllable AsxSb1-x interfaces
InAs/GaSb type II superlattices were grown on (100) GaSb substrates by metalorganic chemical vapor deposition (MOCVD). A plane of mixed As and Sb atoms connecting the InAs and GaSb layers was introduced to compensate the tensile strain created by the InAs layer in the SL. Characterizations of the samples by atomic force microscopy and high-resolution X-ray diffraction demonstrate flat surface m...
متن کاملHigh performance type-I! InAs/GaSb superlattice photodiodes
We report on the demonstration of high performance p-i-n photodiodes based on type-I! InAs/GaSb superlattices operating in the very long wavelength infrared (VLWIR) range at 80 K. Material is grown by molecular beam epitaxy on GaSb substrates with excellent crystal quality as evidenced by xray diffraction and atomic force microscopy. The processed devices with a 50% cutoff wavelength of 222 tm ...
متن کاملlnAs/Ga1 _x lnxSb strained-layer superlattices grown by molecular-beam epitaxy
We report the successful growth oflnAs/Ga 1 _ x Inx Sb strained-layer superlattices by molecularbeam epitaxy. The superlattices are grown on thick, strain-relaxed InAs or GaSb buffer layers on ( 100)-oriented GaAs substrates. A short-period, heavily strained superlattice at the GaAs interface is found to improve the structural quality of the buffer layer. Arsenic incorporation in nominally pure...
متن کامل